Integración de la inteligencia artificial generativa para el aprendizaje de fundamentos de programación: una revisión sistemática de la literatura
DOI:
https://doi.org/10.62697/rmiie.v3i2.78Palabras clave:
IntInteligencia Artificial Generativa, aprendizaje, competencias, programaciónResumen
La Inteligencia Artificial Generativa (IAG) ha mostrado un potencial significativo para revolucionar el aprendizaje de la programación en niveles educativos desde primaria hasta educación superior. Por ello, con esta revisión sistemática de literatura se analiza cómo la IAG se integra en la enseñanza-aprendizaje de fundamentos de programación, destacando tanto sus ventajas como los desafíos asociados. Las herramientas de IAG, incluyendo sistemas de tutoría inteligente y entornos de programación interactivos, ofrecen personalización del aprendizaje y retroalimentación inmediata, lo que facilita un entorno educativo más adaptativo y atractivo. Sin embargo, la revisión de literatura revela brechas en la implementación práctica y en la evaluación crítica de estas tecnologías, sugiriendo la necesidad de un enfoque más holístico que considere aspectos técnicos y humanísticos en el diseño de soluciones educativas. Así, este estudio subraya la importancia de una colaboración multidisciplinar para explorar efectivamente el uso ético y eficiente de la IAG en la educación en programación.
Descargas
Citas
Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., & Santos, E. A. (2023). Programming Is Hard - Or at Least It Used to Be. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 1, 500–506. https://doi.org/10.1145/3545945.3569759
Bressane, A., Zwirn, D., Essiptchouk, A., Saraiva, A. C. V., Carvalho, F. L. de C., Formiga, J. K. S., Medeiros, L. C. de C., & Negri, R. G. (2024). Understanding the role of study strategies and learning disabilities on student academic performance to enhance educational approaches: A proposal using artificial intelligence. Computers and Education: Artificial Intelligence, 6. https://doi.org/10.1016/j.caeai.2023.100196
Chang, Q., Pan, X., Manikandan, N., & Ramesh, S. (2022). Artificial Intelligence Technologies for Teaching and Learning in Higher Education. International Journal of Reliability, Quality and Safety Engineering, 29(05). https://doi.org/10.1142/S021853932240006X
Chiu, T. K. (2024). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence, 6. https://doi.org/https://doi.org/10.1016/j.caeai.2023.100197
Dimitriadis, G. (2020). Evolution in Education: Chatbots. Homo Virtualis, 3(1). https://doi.org/10.12681/homvir.23456
Figueiredo, J., & García-Peñalvo, F. J. (2020). Intelligent Tutoring Systems approach to Introductory Programming Courses. Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality, 34–39. https://doi.org/10.1145/3434780.3436614
Gautam, S., Akgun, M., & Mitra, P. (2022). Exploring the challenges of AI experts to inform AI curriculum. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 2, 1338–1338. https://doi.org/10.1145/3545947.3576284
Harry, A. (2023). Role of AI in Education. Interdiciplinary Journal and Hummanity (INJURITY), 2(3), 260–268. https://doi.org/10.58631/injurity.v2i3.52
Insuasti Portilla, J. (2016). Problemas de enseñanza y aprendizaje de los fundamentos de programación. Educación y Desarrollo Social, 10(2), 234–246.
Kay, J., Bartimote, K., Kitto, K., Kummerfeld, B., Liu, D., & Reimann, P. (2022). Enhancing learning by Open Learner Model (OLM) driven data design. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100069
Khosravi, H., Sadiq, S., & Amer-Yahia, S. (2023). Data management of AI-powered education technologies: Challenges and opportunities. Journal of Learning Letters. https://doi.org/10.59453/XLUD7002
Kong, S.-C., Man-Yin Cheung, W., & Zhang, G. (2021). Evaluation of an artificial intelligence literacy course for university students with diverse study backgrounds. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100026
Lin, Y. H. (2022). Chatbot Script Design for Programming Language Learning. 2022 IEEE 5th Eurasian Conference on Educational Innovation (ECEI), 123–125. https://doi.org/10.1109/ECEI53102.2022.9829460
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016
Petrovska, O., Clift, L., Moller, F., & Pearsall, R. (2024). Incorporating Generative AI into Software Development Education. Proceedings of the 8th Conference on Computing Education Practice, 37–40. https://doi.org/10.1145/3633053.3633057
Prather, J., Reeves, B. N., Denny, P., Becker, B. A., Leinonen, J., Luxton-Reilly, A., Powell, G., Finnie-Ansley, J., & Santos, E. A. (2023). “It’s Weird That it Knows What I Want”: Usability and Interactions with Copilot for Novice Programmers. ACM Transactions on Computer-Human Interaction, 31(1). https://doi.org/10.1145/3617367
Repenning, A., Lamprou, A., & Basawapatna, A. (2021). Computing Effect Sizes of a Science-first-then-didactics Computational Thinking Module for Preservice Elementary School Teachers. Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 274–280. https://doi.org/10.1145/3408877.3432446
Roldán-Álvarez, D., & Mesa, F. J. (2023). Intelligent Deep-Learning Tutoring System to Assist Instructors in Programming Courses. IEEE Transactions on Education, 67(1), 1–9. https://doi.org/10.1109/te.2023.3331055
Sinchi, E. R., & Gómez Ceballos, G. P. (2018). Acceso y deserción en las universidades. Alternativas de financiamiento. Alteridad, 13(2), 274–287. https://doi.org/10.17163/alt.v13n2.2018.10
Sun, Q., Song, Y., & Tan, H. (2020). How do early programmers benefit from SPOC blended teaching. Proceedings of the ACM Turing Celebration Conference - China, 65–70. https://doi.org/10.1145/3393527.3393539
Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N. (2020). IntelliCode compose: code generation using transformer. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1433–1443. https://doi.org/10.1145/3368089.3417058
Yadav, A., Connolly, C., Berges, M., Chytas, C., Franklin, C., Hijón-Neira, R., Macann, V., Margulieux, L., Ottenbreit-Leftwich, A., & Warner, J. R. (2022). A Review of International Models of Computer Science Teacher Education. Proceedings of the 2022 Working Group Reports on Innovation and Technology in Computer Science Education, 65–93. https://doi.org/10.1145/3571785.3574123
Yetistiren, B., Ozsoy, I., & Tuzun, E. (2022). Assessing the quality of GitHub copilot’s code generation. Proceedings of the 18th International Conference on Predictive Models and Data Analytics in Software Engineering, 62–71. https://doi.org/10.1145/3558489.3559072
Yildirim-Erbasli, S. N., & Bulut, O. (2023). Conversation-based assessment: A novel approach to boosting test-taking effort in digital formative assessment. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2023.100135
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
© Podrá reproducirse, de forma parcial o total, el contenido de esta publicación, siempre que se haga de forma literal y se mencione la fuente.